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We show that in the classical interaction picture the echo-dynamics, namely the composition of
perturbed forward and unperturbed backward hamiltonian evolution, can be treated as a time-
dependent hamiltonian system. For strongly chaotic (Anosov) systems we derive a cascade of ex-
ponential decays for the classical Loschmidt echo, starting with the leading Lyapunov exponent,
followed by a sum of two largest exponents, etc. In the loxodromic case a decay starts with the rate
given as twice the largest Lyapunov exponent. For a class of perturbations of symplectic maps the
echo-dynamics exhibits a drift resulting in a super-exponential decay of the Loschmidt echo.
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Analyzing the parametric stability of quantum dynam-
ics through the so-called fidelity or Quantum Loschmidt

Echo (QLE) has become increasingly popular and useful
tool, either in the context of experiments with many-
body systems [1], quantum computation [2], or simple
dynamical systems [3–8]. The corresponding Classical

Loschmidt Echo (CLE) has been defined [6, 9–11], as

F (t) =

∫

dNxρ(x)ρE(x, t) (1)

where ρ(x) is an L2 normalized non-negative initial den-
sity in N = 2d-dimensional classical phase space with
coordinates x, and ρE(x, t) is its image after the echo-

dynamics, i.e. a composition of a hamiltonian flow with a
slightly perturbed time-reversed hamiltonian flow. It has
been found that for classically chaotic systems CLE fol-
lows QLE only for a short time that scales as log

�
. For

longer times, CLE of chaotic systems has been shown
to follow time correlation functions [11]. However, CLE
is in itself an interesting quantity in classical statisti-
cal mechanics as it provides a way to quantify the old
Loschmidt-Boltzmann controversy.

For shorter times, before the relaxation of the initially
localized density under echo-dynamics takes place, it has
been found numerically[9] that CLE decays exponentially
with the rate given by the Lyapunov exponent. No classi-
cal mechanism for this phenomenon has been given, apart
from the necessary correspondence with QLE for which a
semiclassical theory of Lyapunov decay exists [4]. In this
letter we report several surprising analytical results for
the case of localized initial densities and for sufficiently
weak perturbations: (i) In many-dimensional systems, a
cascade of Lyapunov decays is predicted, with the expo-
nents which are given as consecutive sums of largest few
Lyapunov exponents. Hence precise conditions for pre-
viously observed simple Lyapunov decay are understood.
(ii) In loxodromic case of degenerate largest Lyapunov
exponent λ1 = λ2 we find initial decay of CLE with ex-
ponent 2λ1. (iii) For maps under special conditions we
find non-zero average drift of the echo-dynamics result-
ing in faster than exponential decay of CLE. The same
results should apply for quantum fidelity (QLE) up to

the log-time, namely until the Wigner function follows
the classical density.

The propagation of classical densities in phase space is
governed by the unitary Liouville evolution Ûδ(t)

d

dt
Ûδ(t) = L̂Hδ( � ,t)Ûδ(t) (2)

where L̂A( � ,t) = (∇A(x, t)) ·J∇, A is any observable, and

Hδ(x, t) = H0(x, t) + δV (x, t), (3)

is a generally time-dependent family of Hamiltonians
with perturbation parameter δ. Matrix J is the usual

symplectic unit. Similarly, dÛ †
δ (t)/dt = −Û †

δ (t)L̂Hδ( � ,t).
The classical echo propagator that composes perturbed
forward evolution with the unperturbed backward evolu-
tion is also unitary and is given by

ÛE(t) = Û †
0 (t) Ûδ(t). (4)

Using eqs. (2,3,4) and writing Ûδ(t) = Û0(t)ÛE(t) we get

d

dt
ÛE(t) =

{

Û †
0 (t)L̂δV ( � ,t)Û0(t)

}

ÛE(t). (5)

The classical dynamics has the nice property that the
evolution is governed by characteristics that are simply
the classical phase space trajectories, so the action of the
evolution operator on any phase space density is given
as Û0(t) ρ = ρ ◦ φ−1

t , where φ−1
t denotes the backward

(unperturbed) phase space flow from time t to 0. Simi-

larly, Û †
0 (t) ρ = ρ ◦ φt, where φt represents the forward

phase space flow from time 0 to time t. Here and in the
following we assume the dynamics to start at time 0.

We note that echo-dynamics (4) can be treated as Li-
ouvillian dynamics in interaction picture, since

{

Û †
0 (t)L̂A( � ,t)Û0(t)ρ

}

(x) = (6)

= Û †
0 (t) (∇ � A(x, t)) · J∇ � ρ

(

φ−1
t (x)

)

=

=
(

∇ �
t( � )A(φt(x), t)

)

· J∇ �
t( � )ρ

(

φ−1
t (φt(x))

)

=

= (∇ � A(φt(x), t)) · J∇ � ρ(x) =
{

L̂A( �
t( � ),t) ρ

}

(x).
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In the last line we used the invariance of the Poisson
bracket under the flow. This extends eq. (5) to form (2)

d

dt
ÛE(t) = L̂HE( � ,t) ÛE(t) (7)

where the echo Hamiltonian is given by

HE(x, t) = δV (φt(x), t) . (8)

The function HE is nothing but the perturbation part δV
of the original Hamiltonian, which, however, is evaluated
at the point that is obtained by forward propagation with
the unperturbed original Hamiltonian. It is important
to stress that this is not a perturbative result but an
exact expression. Also, even if the original Hamiltionian
system was time independent, the echo dynamics obtains
an explicitly time dependent form. Trajectories of the
echo-flow are given by Hamilton equations

ẋ = J ∇HE(x, t). (9)

At this point we limit our discussion only to time
independent original Hamiltonians and perturbations.
Slightly more general case of periodically driven systems
reducible to symplectic maps shall also be discussed later.

Inserting (8) into eq. (9) yields

ẋ = δJ∇ � V (φt(x)) = δJM
T
t (x)(∇V )(φt(x)). (10)

Here we have introduced the stability matrix Mt(x),
[Mt(x)]i,j = ∂j [φt(x)]i. From now on we assume
that the flow φt is Anosov. To understand the dy-
namics (10) we need to explore the properties of
Mt. We start by writing the matrix M

T
t (x)Mt(x) =

∑

j e2λj td2
j (x, t)vj(x, t) ⊗ vj(x, t) expressed in terms

of orthonormal eigenvectors vj(x, t) and eigenvalues
d2

j (x, t) exp(2λj t). After the ergodic time te necessary
for the echo trajectory to explore the available region
of phase space, Osledec theorem[12] guarantees that the
eigenvectors of this matrix converge to Lyapunov eigen-
vectors being independent of time, while dj(x, t) grow
slower than exponentially, so the leading exponential
growth defines the Lyapunov exponents λj . Similarly,
the matrix Mt(x)MT

t (x) =
∑

j e2λjtc2
j (xt, t)uj(xt, t) ⊗

uj(xt, t), where xt = φt(x), has the same eigenvalues
[c2

j (xt, t) ≡ d2
j (x, t)], and its eigenvectors depend on the

final point xt only, as the matrix in question can be re-
lated to the backward evolution. The vectors {uj(xt)},
{vj(x)}, constitute left, right, part, respectively, of the
singular value decomposition of Mt(x), so we write for
t � te

Mt(x) =

N
∑

j=1

exp(λjt) ej(φt(x)) ⊗ fj(x) (11)

assuming that the limits ej(x) = limt→∞ cj(x, t)uj(x, t),
fj(x) = limt→∞ dj(x, t)vj(x, t) exist. Rewriting eq. (10)
by means of eq. (11) we obtain

ẋ = δ

N
∑

j=1

exp(λjt) Wj(φt(x)) hj(x) (12)

where hj(x) = Jfj(x), and introducing new observables

Wj(x) = ej(x) · ∇V (x). (13)

At this point it is perhaps necessary to discuss the
nature of the vector fields ej(x), fj(x) [13]. While the
theorem [12] guarantees the existence of these directions,
the actual sizes of these fields as given by cj , dj are not
yet well understood. Numerical data suggest that these
quantities do converge as t → ∞ for an Anosov system.

For small perturbations the echo trajectories remain
close to initial point x(0) for times large in comparison
to the internal dynamics of the system (te, Lyapunov
times, decay of correlations, etc), and in this regime the
echo evolution can be linearly decomposed along different
independent directions hj(x(0))

x(t) = x(0) +

N
∑

j=1

yj(t) hj(x(0)). (14)

For longer times, the point x(t) moves away from the
initial point, but the dynamics is still governed by the
local unstable vectors at the evolved point. Therefore
the decay of fidelity is governed by the spreading of the
densities along the conjugated unstable manifolds defined
by the vector field h(x).

Inserting (14) into (12) we obtain for each direction hj

ẏj = δ exp(λj t)Wj(φt(x)). (15)

For stable directions with λj < 0, clearly after a certain
time the variable yj becomes a constant of the order δ.

For unstable directions with λj > 0, we introduce zj as
yj = δ exp(λj t)zj and rewrite the above equation as

żj + λjzj = Wj(φt(x)). (16)

The right hand side of this equation is simply the evolu-
tion of the observable Wj starting from a point in phase
space x = x(0). Due to assumed ergodicity of the flow
φt, Wj(φt(x)) has well defined and stationary statisti-
cal properties such as averages and correlation functions.
Thus the solution zj(t) of the linear damped equation
(16) has also stationary statistics and well defined time-
and δ-independent probability distribution Pj(zj). Its
moments can be expressed in terms of moments and cor-
relation functions of Wj , in particular Wj = 0 [14]. The
analysis remains valid in a general case of explicitly time-
dependent Wj [13].

Going back to the original coordinate yj we obtain
its distribution as Kj(yj) = Pj(zj)dzj/dyj , or Kj(yj) =
Pj (exp(−λjt)yj/δ) exp(−λjt)/δ. This probability distri-
bution tells us how, on average, points within some ini-
tial (small) phase space set of characteristic diameter ν
spread along locally well defined unstable Lyapunov di-
rection j and therefore represents an averaged kernel of
the evolution of such densities along this direction. Start-
ing from the initial localized density ρ0, of small width ν
such that the decomposition (14) does not change appre-
ciably along ρ0, the echo dynamics for densities solves as
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FIG. 1: Density evolution of echo-dynamics for the perturbed
cat map [eq. (19), µ = 0.3]. The initial density is a character-
istic function on the circle (gray) centered at (q, p) = (0.5, 0.5)
having the radius 0.01, while the evolved density at the time
t = 21 is represented by 105 dots. Figures (a,b) refer to cor-
responding cases for perturbations without and with drift,
respectively (δ = 10−9, see text for details).

ρt(y) =
∫

dNy′ρ0(y
′)

∏

j Kj(yj − y′
j). For stable direc-

tions j we set Kj(yj) = δ(yj), as the shift of yj (of order
δ) can be neglected as compared to unstable directions.
This also implies that the assumption δ � ν is necessary
in order to get any echo at all after not too short times.
CLE (1) can now be written as F (t) =

∫

dNy ρ0(y) ρt(y).
As long as the width νj of ρ0 along the unstable direction
j is much larger than the width of the kernel Kj , there is
no appreciable contribution to the fidelity decay in that
direction. At time

tj = (1/λj) log(νj/(δγj)), (17)

where γj is a typical width of the distribution Pj , the
width of the kernel is of the order of the width of the
distribution along the chosen direction. After that time,
the overlap between the two distributions along the cho-
sen direction starts to decay with the same rate as the
value of the kernel in the neighborhood of yj = 0, which
is ∝ exp(−λjt). The total overlap decays as

F (t) ≈
∏

j; tj<t

exp [−λj(t − tj)] , (18)

where only those unstable directions contribute to the
decay for which tj > t. As the time tj is shorter the
higher the corresponding Lyapunov exponent λj , fidelity
will initially decay with the largest Lyapunov exponent
λ1. In chaotic systems with more than two degrees of
freedom we, however, expect to observe an increase of
decay rate after the time t2, etc. Eq. (18) provides good
description for CLE as long as F (t) does not approach
the saturation value F∞ ∼ νN where the asymptotic de-
cay of CLE is then given by leading Perron-Frobenius
eigenvalue [11].

Though the above theory has been developed for
smooth flows, the generalization to ergodic symplectic
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FIG. 2: CLE as a function of time for the same conditions as
in fig. 1 except using 106 points. The circles refer to the case
(a) (no drift), chain line is the theoretical Lyapunov decay
with λ1 = 0.958, and the triangles refer to the ballistic case
(b) (drift). In both cases the fidelity saturates at the plateau
(dotted line) given by the relative volume (area) of the initial
set.
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FIG. 3: CLE for two examples of 4D cat maps perturbed as
explained in text. Triangles refer to doubly-hyperbolic case
where initial set was a 4-cube [0.1, 0.11]4, and δ = 2 · 10−4,
whereas circles refer to loxodromic case where initial set was
[0.1, 0.15]4 , and δ = 3 · 10−3 . In both cases initial density was
sampled by 109 points. Chain lines give exponential decays
with theoretical rates, λ1 = 1.65, λ1 + λ2 = 2.40 (doubly-
hyperbolic), and 2λ1 = 1.06 (loxodromic).

maps on bounded phase space M is straightforward. We
adopt notation of Ref. [6], sect. 4: φ ≡ φ1, discrete time
t is an integer and a general small perturbation is given
by a composition φδ = φ ◦ gδ with a near-identity map
gδ generated by a vector field a(x), dgδ/dδ = a(gδ) with
initial condition g0(x) = x. For the perturbed map to
remain symplectic we write a(x) = J∇V (x) for some po-
tential V (x). We note that on compact phase space V (x)
does not need to be unique and continuous, e.g. for a unit
2-torus V (q+1, p) = V (q, p)+α, V (q, p+1) = V (q, p)+β
where α, β are arbitrary constants. Provided hyperbolic
orbits with inversion do not exist, η ≡ 0 [13], one finds a
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non-vanishing drift of echo-dynamcis, W j 6= 0, resulting
in a possible super-exponential decay of CLE if the mean
Wj/λj of the distribution Pj(zj) is larger than its width
γj .

In order to illustrate super-exponential versus expo-
nential decay of CLE we consider the perturbed cat map

p = p + q −
µ

2π
sin(2πq) + δs(q), µ ∈ [0, 1)

q = q + p. (19)

The perturbation was chosen either as: (a) s(q) =
sin(2πq)/(2π), or (b) s(q) = 1/(2π) where the pertur-
bation is a shift in phase space. The main difference be-
tween the two is that the case (a) corresponds to zero drift
since a unique smooth potential exists (α = β = 0), while
in case (b) a = const 6= 0 and the Lyapunov fields have a
predominant direction in phase space for this system, e.g.
for the unperturbed cat map (µ = 0) e(x), f(x), h(x)
are constant. Since the perturbed cat has no orbits with
inversion[13] the corresponding phase space observable
Wj for the case (b) has a distinct nonzero average value,
causing the kernel Kj to drift exponentially in time. The
difference in the qualitative nature of the two decays is
shown in figure 1. In figure 2 we show the behaviour of
fidelity as a function of time for the two cases, where a
super-exponential decay is observed in the case of drift.

Another result, which applies only to systems with two
or more unstable directions, is the occurrence of decays
which are exponential but faster than Lyapunov. In the
case of well separated individual Lyapunov exponents the
decay is expected to go through a cascade of increasing

decay rates given by (18), whereas in the loxodromic case
λ1 = λ2 the rate is 2λ1. We illustrate this numerically
for 4D cat maps [15]: x′ = Cx (mod 1), x ∈ [0, 1)4, and

Cd−h =







2 −2 −1 0
−2 3 1 0
−1 2 2 1

2 −2 0 1






, Clox =







0 1 0 0
0 1 1 0
1 −1 1 1

−1 −1 −2 0







are two examples representing the doubly-hyperbolic and
loxodromic case. Matrix Cd−h has the unstable eigen-
values ≈ 5.22, 2.11, while the large eigenvalues of Clox

are ≈ 1.70 exp(±i1.12). The perturbation for both cases
was done by performing an additional mapping at each
timestep x̄1 = x′

1 + δ sin (2πx3) (mod 1), x̄2,3,4 = x′
2,3,4.

In figure 3 we show the two types of decay which agree
with theoretical predictions.

In conclusion, we have developed a theory for short-
time decay of CLE based on classical interaction picture.
Our theory predicts several new phenomena, in particu-
lar a cascade of exponential decays in systems with more
than one unstable direction and doubly-Lyapunov decay
for the particular case of loxodromic stability. Besides
being related to quantum computation, our results for
systems with many degrees of freedom provide a way to
understand macroscopic irreversibility in classical statis-
tical mechanics.
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[6] T. Prosen and M. Žnidarič, J. Phys. A 35, 1455 (2002).
[7] N. R. Cerruti and S. Tomsovic, Phys. Rev. Lett. 88,

054103 (2002).
[8] Ph. Jacquod et al. Phys. Rev. E 64, 055203(R) (2001).
[9] G. Benenti and G. Casati, Phys. Rev. E 65, 066205 (2002).

[10] B. Eckhardt, J. Phys. A: Math. Gen 36, 371 (2003).
[11] G. Benenti, G. Casati and G. Veble, Phys. Rev. E 67,

055202 (2003).
[12] V. I. Osledec, Moscow. Math. Soc. 19, 197 (1968).
[13] We note that signs of the fields ± � j,±

�
j are not unique

provided the flow has hyperbolic periodic orbits with in-
version. In such a case, the explicitly time-dependent ob-
servables Wj( � , t) = Wj( � )(−1)η( � ,t) should be defined
with an additional sign-factor which counts the number
η of inversions of the vector field along the trajectory,
(−1)η( � t( � ),t) � j( � t( � )) · Mt( � ) � j( � ) > 0.

[14] It is equivalent to show that � dN � ρ0( � ) ˙� (t) = 0, for
finite but arbitrary long t, which follows from integrating
by parts the rightmost side of eq. (10).

[15] A. M. F. Rivas et al, Nonlinearity 13, 341 (2000).


